Cardiology
Areas of Expertise

Cardiology

Iron Deficiency in patients with Chronic Heart Failure

55% of patients with chronic heart failure suffer from iron deficiency35

graph

Iron deficiency can worsen the symptoms of chronic heart failure37

graph

  • In the heart muscle cells, the percentage by volume of mitochondria is 10 times higher than in other muscles (approx. 35% vs. 3-8% in the biceps)38,39
  • Iron is important for mitochondrial energy production (in the form of ATP)40
  • The heart requires fast and effective intracellular energy delivery to contract rhythmically41

Ferinject® improves symptoms in patients with chronic heart failure and iron deficiency42

graph

  • 47% of patients (vs. 29% with placebo) are in NYHA class I or Il by the end of their therapy 
  • 76% of patients (vs. 55% with placebo) feel an improvement in symptoms
  • Iron deficiency can worsen the symptoms (NYHA classes) and prognosis of chronic heart failure42
  • Ferritin and TSAT screening tests are indicated in every new diagnosis of heart failure36
  • Significant decrease in the risk of hospitalisation and mortality in heart failure patients with Ferinject® therapy43,44
  • Oral iron therapy is not sufficiently effective according to the latest research45
  • Ferinject® enables clear and lasting improvement of physical performance43,46
cardiology

References

  1. Qunibi WY et al. A randomized controlled trial comparing intravenous ferric carboxymaltose with oral iron for treatment  of iron deficiency anaemia of non-dialysis-dependent chronic kidney disease patients. Nephrol Dial Transplant (2011); 26 (5):1599–607.
  2. Van Wyck DB et al. Large-dose intravenous ferric carboxymaltose injection for iron deficiency anemia in heavy uterine bleeding: a randomized, controlled trial. Transfusion (2009); 49 (12): 2719–28.
  3. www.swissmedicinfo.ch.
  4. Andersson M, Egli IM, Zimmerman MB. Eisenmangel. Schweizer Zeitschrift für Ernährungsmedizin. 2010; (1): 13–8.
  5. Favrat B et al. Evaluation of a Single Dose of Ferric Carboxymaltose in Fatigued, Iron-Deficient Women – PREFER a Randomized, Placebo-Controlled Study; PLOS ONE 2014, Volume 9, Issue 4, e94217.
  6. Shariatpanaahi VM et al. The relationship between depression and serum ferritin level. Eur J Clin Nutr. 2007 Apr; 61 (4): 532–5.
  7. Murray-Kolb L, Beard JL. Iron treatment normalizes cognitive functioning in young women. Am J Clin Nutr; 2007; 85:778–787.
  8. Connor JR et al. Iron and restless legs syndrome: treatment, genetics and pathophysiology. Sleep Med. 2017 Mar; 31: 61–70.
  9. Fehr J et al. Diagnosis and treatment of iron deficiency without anaemia. Praxis (Bern 1994), 2009.
  10. Herklotz R und Huber A. Labordiagnose von Eisenstoffwechselstörungen. Schweiz Med Forum 2010;10(30–31):500–507.
  11. Herfs R et al. Treatment of Iron Deficiency with or without Anaemia with intravenous Ferric Carboxymaltose in Gynaecological Practices – A Non-Interventional Study; Geburtshilfe Frauenheilkunde 2014.
  12. Kassir A et al. Iron deficiency: A diagnostic and therapeutic perspective in psychiatry. Encephale (2017); 43 (1): 85–89.
  13. Kell DB et al. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics (2014) Apr; 6 (4): 748–73.
  14. Breymann C, Honegger C, Hösli I, Surbek D. Diagnostik und Therapie der Eisenmangelanämie in der Schwangerschaft und postpartal. Schweizerische Gesellschaft für Gynäkologie und Geburtshilfe. Expertenbrief No 48. 11.01.2017. www.sggg.ch.
  15. Milman N. Oral Iron Prophylaxis in Pregnancy: Not Too Little and Not Too Much! J Pregnancy. 2012; Published online 2012 Jul 24.
  16. Breymann C. Diagnostik und Therapie der Eisenmangelanamie in der Schwangerschaft und postpartal (aktualisierte Version, ersetzt Weisung vom 19.10.07); Gynécologie Suisse; 2009.
  17. Kumar K Jagadish et al. Maternal anemia in various trimesters and its effect on newborn weight and maturity: an observational study. Int J Prev Med; 2013.
  18. Froessler B et al. Intravenous ferric carboxymaltose for anaemia in pregnancy. BMC Pregnancy Childbirth; 2014.
  19. Breymann C et al. Ferric carboxymaltose vs. oral iron in the treatment of pregnant women with iron deficiency anemia: an inter- national. open-label, randomized controlled trial (FER-ASAP), J. Perinat. Med. 2016, 45 (4): 443–453.
  20. Perewusnyk G et al. Parenteral iron therapy in obstetrics: 8 years experience with iron-sucrose complex. Br J Nutr. 2002;88(1):3–10.
  21. Jansen AJ et al. Postpartum hemorrhage and transfusion of blood and blood components. Obstet Gynecol Surv. 2005;60(10):663–71.
  22. Goffman D, Nathan L, Chazotte C. Obstetric hemorrhage: A global review. Semin Perinatol. 2015 Dec 29. pii: S0146–0005(15)00174–3.
  23. Henly SJ et al. Anemia and insufficient milk in first-time mothers. Birth; 1995;22(2):86–92.
  24. Franca EL et al. Maternal anemia induces changes in immunological and nutritional components of breast milk. J Matern Fetal Neonatal Med. 2013;26(12)1223-7.
  25. Albacar G et al. An association between plasma ferritin concentrations measured 48 h after delivery and postpartum depression. J Affect Disord; 2011;131(1–3):136–42.
  26. Khalafallah AA, Dennis AE, Ogden K et al. Three-year follow-up of a randomised clinical trial of intravenous versus oral iron for anaemia in pregnancy. BMJ Open 2012; 2: e000998. doi:10.1136/bmjopen-2012-000998.
  27. Gisbert JP, Gomollon F. Common misconceptions in the diagnosis and management of anemia in inflammatory bowel disease. Am J Gastroenterol. 2008 May; 103 (5): 1299–307. doi: 10.1111/j.1572-0241.2008.01846.x.
  28. Dignass AU et al. European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases. J Crohns Colitis. 2015 Mar; 9 (3): 211–22. doi: 10.1093/ecco-jcc/jju009. Epub 2014 Dec 3.
  29. Gasche C et al. Iron, anaemia, and inflammatory bowel diseases. Gut. 2004 Aug; 53 (8): 1190–7.
  30. Lee T et al. Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut. 2017 May; 66 (5): 863–871. doi: 10.1136/gutjnl-2015-309940. Epub 2016 Feb 4.
  31. Erichsen K et al. Ferrous fumarate deteriorated plasma antioxidant status in patients with Crohn disease. Scand J Gastroenterol. 2003 May; 38 (5): 543–8.
  32. Tolkien Z et al. Ferrous sulphate supplementation causes significant gastrointestinal side-effects in adults: a systematic review and meta-analysis. PLoS One. 2015 Feb 20; 10 (2): e0117383. doi: 10.1371/journal.pone.0117383. eCollection 2015.
  33. Erichsen MD et al. Oral ferrous fumarate or intravenous iron sucrose for patients with inflammatory bowel disease. Scandinavian Journal of Gastroenterology, 40:9, 1058–1065, doi: 10.1080/00365520510023198.
  34. Evstatiev R et al. FERGIcor, a randomized controlled trial on ferric carboxymaltose for iron deficiency anemia in inflammatory bowel disease. Gastroenterology. 2011 Sep; 141 (3): 846–853. e1–2. doi: 10.1053/j.gastro.2011.06.005. Epub 2011 Jun 12.
  35. Wienbergen H et al. Usefulness of Iron Deficiency Correction in Management of Patients With Heart Failure [from the Registry Analysis of Iron Deficiency-Heart Failure (RAID-HF) Registry], Am J Cardiol (2016) 118 (12): 1875–1880.
  36. Ponikowski P et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975.
  37. Jankowska EA et al. Iron deficiency predicts impaired exercise capacity in patients with systolic chronic heart failure J Card Fail. 2011;17(11):899–906.
  38. Hoppeler H et al. Plasticity of skeletal muscle mitochondria: structure and function. Med Sci Sports Exerc; 2003;35(1):95–104.
  39. Song-Young Park et al. Cardiac, skeletal. and smooth muscle mitochondrial respiration: are all mitochondria created equal? Am J Physiol Heart Circ Physiol 307: H346–H352, 2014.
  40. Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr; 2001;131(2S–2):568S–579S.
  41. Piquereau J et al. Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell? Front Physiol; 2013;10;4:102.
  42. Anker SD et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med; 2009;361(25):2436–48.
  43. Ponikowski P et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency†. Eur Heart J; 2015;36(11):657–68.
  44. Anker SD et al. Effects of ferric carboxymaltose on hospitalisations and mortality rates in iron-deficient heart failure patients: an individual patient data meta-analysis. Eur J Heart Fail; 2018;20(1):125–133.
  45. Lewis GD et al. Effect of Oral Iron Repletion on Exercise Capacity in Patients With Heart Failure With Reduced Ejection Fraction and Iron Deficiency: The IRONOUT HF Randomized Clinical Trial. JAMA. 2017 May 16; 317 (19): 1958–1966.
  46. Van Veldhuisen DJ et al. Effect of Ferric Carboxymaltose on Exercise Capacity in Patients with Chronic Heart Failure and Iron Deficiency. Circulation; 2017;136(15):1374–1383.
  47. McClellan W et al. The prevalence of anemia in patients with chronic kidney disease. Curr Med Res Opin. 2004 Sep; 20 (9): 1501–10.
  48. Fishbane S et al. Iron Indices in Chronic Kidney Disease in the National Health and Nutritional Examination Survey 1988–2004, Clin J Am Soc Nephrol 4: 57–61, 2009.
  49. Kazory A, Ross EA. Anemia: the point of convergence or divergence for kidney disease and heart failure? J Am Coll Cardiol. 2009 Feb 24; 53 (8): 639–47.
  50. Agarwal AK. 2006 Practical approach to the diagnosis and treatment of anemia associated with CKD in elderly. J Am Med Dir Assoc. 2006 Nov; 7 (9 Suppl): S7–S12.
  51. Padhi S et al. Management of anaemia in chronic kidney disease: summary of updated NICE guidance. BMJ 2015;350:h2258.
  52. Locatelli F et al. Kidney Disease: Improving Global Outcomes guidelines on anaemia management in chronic kidney disease:   a European Renal Best Practice position statement. Nephrol Dial Transplant. 2013 Jun; 28 (6): 1346–59.
  53. KDIGO Clinical Practice Guideline for Anemia in Chronic Kidney Disease; Official Journal of the International Society of Nephrology. 2012; ol 2, Issue 4, August (2) 2012.
  54. Toblli JE et al. Switching patients with non-dialysis chronic kidney disease from oral iron to intravenous ferric carboxymaltose: effects on erythropoiesis-stimulating agent requirements, costs, hemoglobin and iron status. PLoS One; 2015;10(4):e0124428.
  55. Sunder-Plassmann G et al. Erythropoietin and iron. Clin Nephrol. 1997;47(3):141–57.
  56. Roger SD et al. Safety of intravenous ferric carboxymaltose versus oral iron in patients with non-dialysis-dependent CKD: an analysis of the 1-year FIND-CKD trial. Nephrol Dial Transplant; 2016.
  57. KDOQI. KDOQI Clinical Practice Guideline and Clinical Practice Recommendations for Anemia in Chronic Kidney Disease: 2007 Update of Hemoglobin Target. Am J Kidney Dis. 2007;50(3):471–530.
  58. Macdougall IC et al. FIND-CKD: a randomized trial of intravenous ferric carboxymaltose versus oral iron in patients with chronic kidney disease and iron deficiency anaemia. Nephrol Dial Transplant. 2014;29(11):2075–84.
  59. Spahn DR. Anemia and patient blood management in hip and knee surgery. Anesthesiology 2010; 113: 482–495.
  60. Gombotz H et al. Patient blood management (part 1) – patient-specific concept to reduce and avoid anemia, blood loss and transfusion. Anaesthesiol Intensivmed Notfallmed Schmerzther 2011; 46: 396–401.
  61. Beris P et al. Perioperative anaemia management: consensus statement on the role of intravenous iron. Br J Anaesth 2008;  100: 599–604.
  62. Beattie WSetal. Risk associatedwithpreoperativeanemiainnon-cardiacsurgery: asingle-centercohortstudy. Anesthesiology 2009; 110: 574–581.
  63. Dunne JR et al. Perioperative anemia: an independent risk factor for infection, mortality, and resource utilization in surgery.       J Surg Res 2002; 102: 237–244.
  64. Carson JL et al. Effect of anaemia and cardiovascular disease on surgical mortality and morbidity. Lancet 1996; 348: 1055–1060.
  65. Gruson KI et al. The relationship between admission hemoglobin level and outcome after hip fracture. J Orthop Trauma 2002;16: 39–44.
  66. Wu WC et al. Preoperative hematocrit levels and postoperative outcomes in older patients undergoing non-cardiac surgery. JAMA 2007; 297: 2481–2488.
  67. Myers E, Grady PO, Dolan AM. The influence of preclinical anaemia on outcome following total hip replacement. Arch Orthop Trauma Surg 2004; 124: 699–701.
  68. Theusinger OM et al. Patient blood management in orthopaedic surgery: a four-year follow-up of transfusion requirements and blood loss from 2008 to 2011 at the Balgrist University Hospital in Zurich, Switzerland. Blood Trans 2014; 12: 195–203.
  69. Musallam KM et al. Preoperative anaemia and postoperative outcomes in non-cardiac surgery: a retrospective cohort study. Lancet 2011; 378: 1396–1407.
  70. Kotze A, Carter LA, Scally AJ. Effect of a patient blood management programme on preoperative anaemia, transfusion rate, and outcome after primary hip or knee arthroplasty: a quality improvement cycle. Br J Anaesth 2012; 108: 943–952.
  71. Lawrence VA et al. Higher Hb level is associated with better early functional recovery after hip fracture repair. Transfusion 2003; 43: 1717–1722.
  72. Leahy MF et al. Improved outcomes and reduced costs associated with a health-system-wide patient blood management program: a retrospective observational study in four major adult tertiary-care hospitals. Transfusion. 2017; 57 (6): 1347–58.
  73. Mehra T et al. Implementation of a PBM monitoring and feedback program significantly reduces transfusions and costs. Transfusion. 2015; 55: 2807–2815.
  74. Trenkwalder C et al. Restless legs syndrome-current therapies and management of augmentation. Nature Reviews Neurology. 2015; Vol. 11, 434–445.
  75. Curgunlu A et al. Prevalence and characteristics of restless legs syndrome (RLS) in the elderly and the relation of serum ferritin levels with disease severity : hospital-based study from Istanbul, Turkey. Arch Gerontol Geriatr. 2012; 55 (1): 73–6.
  76. Picchietti DL et al. Consensus clinical practice guidelines for the diagnosis and treatment of restless legs syndrome/Wills-Ekbom disease during pregnancy and lactation. Sleep Medicine Reviews. 2015; 22, 64–77.
  77. Halid Bas. Das Restless-Legs-Syndrom in der Praxis. Schweiz Med Forum Nr. 24, 2012.
  78. Allen RP et al. Evidence-based and consensus clinical practice guidelines for the iron treatment of restless legs syndrome/ Willis-Ekbom disease in adults and children: an IRLSSG task force report. Sleep Med. 2018 Jan; 41: 27– 44.
  79. Trenkwalder C. et al. Ferric carboxymaltose in patients with restless legs syndrome and non-anemic iron deficiency: A randomized trial. Mov Disord. (2017) Oct; 32 (10): 1478–1482.
  80. Ebnother M et al. Anämie im Alter – eine diagnostische und therapeutische Herausforderung. Therapeutische Umschau (2010), 67, 257–263.
  81. Guralnik JM et al. Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood (2004) Oct. 15; 104 (8): 2263–8.
  82. Andres E et al. Anemia in elderly patients: new insight into an old disorder. Geriatr Gerontol Int 2013; 13(3): 519–527.
  83. Halawi R et al. Anemia in the elderly: a consequence of aging? Expert Rev Hematol. (2017) Apr; 10 (4): 327–335.
  84. Chen Z et al. The relationship between incidence of fractures and anemia in older multiethnic women. JAGS 2010: 58(12); 2337–2344.
  85. Penninx BW et al. Late-life anemia is associated with increased risk of recurrent falls. J Am Geriatr Soc. (2005) Dec; 53 (12): 2106–11.
  86. Frangos E et al. Anemia in the elderly: a frequent condition that should not be overlooked. Rev Med Suisse (2010); 6: 2125–9.
  87. Dharmarajan TS et al. Anemia in the long-term care setting: routine screening and differential diagnosis. Consult Pharm 2008; 23 Suppl A:5–10.
  88. Joosten E et al. Iron deficiency anemia in older adults: A review. Geriatr Gerontol Int. 2018;18(3):373–379.
  89. Agnihotri P et al. Chronic anemia and fatigue in elderly patients: results of a randomized, double-blind, placebo-controlled, crossover exploratory study with epoetin alfa. J Am Geriatr Soc (2007) Oct; 55 (10): 1557–65.
  90. Hong CH et al. Anemia and risk of dementia in older adults: findings from the Health ABC study. Neurology 2013; 81(6): 528–533.
  91. Lignes directrices du NCCN. Cancer et anémie induite par la chimiothérapie. Version v1.2018. www.nccn.com.
  92. Naoum FA. Iron deficiency in cancer patients. Rev Bras Hematol Hemoter. 2016; 38 (4): 325–330.
  93. De Castro J et al. Iron deficiency in patients with solid tumours: prevalence and management in clinical practice. Clin Trans Oncol. 2014; 16 (9): 823–8.
  94. Cella D. Factors influencing quality of life in cancer patients: anemia and fatigue. Semin Oncol. 1998 Jun; 25 (3 Suppl 7): 43–6.
  95. Gilreath JA et al. Diagnosis and treatment of cancer-related anemia. Am J Hematol. 2014 Feb; 89 (2): 203–12.
  96. Schrijvers D et al. Erythropoiesis-stimulating agents in the treatment of anaemia in cancer patients: ESMO Clinical Practice Guidelines for use. Ann Oncol. 2010; 21 (5): v244–7.
  97. Steinmetz T et al. Clinical experience with ferric carboxymaltose in the treatment of cancer and chemotherapy associated anaemia, Ann Oncol. 2013; 24: 475–482.
  98. Aapro M et al. Prevalence and management of cancer-related anaemia, iron deficiency and the specific role of i.v. iron. Ann Oncol. 2012; 23 (8): 1954–1962.
Cardiology & Iron Deficiency | Ferinject CH
55% of patients with chronic heart failure suffer from iron deficiency. Ferinject® enables clear and lasting improvement of physical performance.