Métabolisme du fer
La carence en fer

Absorption du fer

L’absorption intestinale est l’un des principaux régulateurs de l’homéostasie du fer. En général, seule une petite portion du fer est absorbée à partir des aliments, cette quantité variant considérablement d’un individu à l’autre ainsi que chez le même individu. Une augmentation des besoins en fer entraîne une augmentation de l’absorption, laquelle est toutefois limitée et dépasse rarement 3 à 5 mg de fer par jour ou des facteurs tels que la sécrétion gastrique, le pH, la motilité intestinale et des troubles gastro-intestinaux ou une intervention chirurgicale affectent également l’absorption du fer à partir de la nourriture.13

 Il y a deux types de fer alimentaire:

  • Fer héminique: vient de l’hémoglobine et de la myoglobine contenues dans les aliments d’origine animale. Sa biodisponibilité est excellente, même s’il ne représente qu’une petite portion du fer alimentaire, et il contribue de façon significative au fer absorbé. 15 à 35% du fer héminique sont absorbés et cette absorption n’est pas affectée par d’autres ingrédients alimentaires.14
  • Fer non héminique: on le trouve en diverses quantités dans des aliments d’origine végétale. Il représente le gros de l’apport nutritif (> 90%) et sa biodisponibilité est fortement influencée par la présence de facteurs stimulants ou inhibiteurs. On estime que la biodisponibilité du fer se situe entre 5 et 12% pour les régimes végétariens.15
Absorption Intestinale du fer héminique et non héminique des aliments

img

Références

  1. Clénin GE. The treatment of iron deficiency without anaemia (in otherwise healthy persons). Swiss Med Wkly. 2017;147:w14434
  2. Musallam KM, Taher AT. Iron deficiency beyond erythropoiesis: should we be concerned? Curr Med Res Opin. 2018;34(1):81–93.
  3. Doom JR. Striking while the iron is hot: Understanding the biological and neurodevelopmental effects of iron deficiency to optimize intervention in early childhood. Curr Pediatr Rep. 2015;2(4):291–298
  4. Worldwide prevalence of anaemia 1993–2005. WHO The global prevalence of anaemia in 2011. Geneva: World Health Organization 2015
  5. Lopez A et al. Iron deficiency anaemia. Lancet 2016;387(10021):907–16
  6. Herklotz R and Huber A. Labordiagnose von Eisenstoffwechselstörungen. Schweiz Med Forum 2010;10(30–31):500–507
  7. Clénin et al. The treatment of iron deficiency without anaemia (in otherwise healthy persons). Swiss Med Wkly. 2017 Jun14;147:w14434
  8. Hercberg S, Preziosi P, Galan P. Iron deficiency in Europe. Public Health Nutr 2001; 4: 537–545
  9. Chrobak C et al. Iron homeostasis in inflammation: a single centre prospective observational study in medical inpatients. Swiss Med Wkly. 2017;147:w14431
  10. Muckenthaler MU et al. A red carpet for iron metabolism. Cell 2017;168(3):344–361
  11. Dignass A et al. Limitations of Serum Ferritin in Diagnosing Iron Deficiency in Inflammatory Conditions. Int J Chronic Dis. 2018 Mar 18;2018:9394060
  12. Crichton RR et al. Iron therapy with special emphasis on intravenous administration. UNI-MED 2008, 4th Edition, chapter 3
  13. Huch R and Breymann C. Anämie in Schwangerschaft und Wochenbett. UNI-MED 2005, chapt. 3, p. 35
  14. Hunt JR. High-, but not low-bioavailability diets enable substantial control of women’'s iron absorption in relation to body iron stores, with minimal adaptation within several weeks, The American Journal of Clinical Nutrition, Volume 78, Issue 6, 1 December 2003, Pages 1168–1177
  15. Hurrell R, Egli I. Iron bioavailability and dietary reference values. Am J Clin Nutr. 2010;91(5):1467S–1467S
  16. Crichton R et al. Iron Therapy – With Special Emphasis on Intravenous Administration, 4th edition, UNI-MED, 2008, chapt. 2, p. 19–20
  17. Finch CA, Bellotti V, Stray S, Lipschitz DA, Cook JD, Pippard MJ, Huebers HA. Plasma ferritin determination as a diagnostic tool. West J Med 1986;145:657–663.
  18. Douglas B. Kell and Etheresia Pretorius. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics, 2014,6, 748.
  19. T. N. Tran, S. K. Eubanks, K. J. Schaffer, C. Y. J. Zhou and M. C. Linder, Secretion of ferritin by rat hepatoma cells and its regulation by inflammatory cytokines and iron, Blood, 1997, 90, 4979–4986.
  20. L. A. Cohen, L. Gutierrez, A. Weiss, Y. Leichtmann- Bardoogo, D. L. Zhang, D. R. Crooks, R. Sougrat, A. Morgenstern, B. Galy, M. W. Hentze, F. J. Lazaro, T. A. Rouault and E. G. Meyron-Holtz, Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood  2010  116:1574-1584;  doi: https://doi.org/10.1182/blood-2009-11-253815
  21. Cappellini MD et al. Iron deficiency across chronic inflammatory conditions: international expert opinion on definition, diagnosis, and management. Am J Hematol. 2017; 92(10):1068–1078
  22. Martius et al. Eisenmangel ohne Anämie – ein heisses Eisen? Nicht hämatologische Auswirkungen des Eisenmangels: Welche sind belegt, wann kommen sie zum Tragen? Schweiz Med Forum 2009;9(15–16):294–299
  23. Verdon F et al. Iron supplementation for unexplained fatigue in non-anaemic women: double blind randomized placebo controlled trial. BMJ 2003, 326: 1124–1126
  24. Cornuz J et al. Fatigue: a practical approach to diagnosis in primary care. 2006, CMAJ, 174(6)
  25. Favrat B et al. Evaluation of a single dose of ferric carboxymaltose in fatigue, iron-deficient women–PREFER a randomized, placebo-controlled study. PLoS One 2014;9(4):e94217
  26. Houston BL et al. Efficacy of iron supplementation on fatigue and physical capacity in non-anaemic iron-deficient adults: a systematic review of randomized controlled trials. BMJ Open 2018 8(4):e019240
  27. Yokoi K et al. Iron deficiency without anaemia is a potential cause of fatigue: meta-analyses of randomized controlled trials and cross-sectional studies. Br J Nutr. 2017 117(10):1422–1431
  28. Murray-Kolb LE, Beard JL. Iron treatment normalizes cognitive functioning in young women. On J Clin Nutr 2007, 85: 778
  29. Low MS et al. Daily iron supplementation for improving anaemia, iron status and health in menstruating women. Cochrane Database Syst Rev. 2016 Apr 18;4:CD009747
  30. Geng F et al. Impact of fetal-neonatal iron deficiency on recognition memory at two months of age. J Pediatr. 2015; 167(6):1226–1232
  31. Berglund SK et al. Effects of iron supplementation of low-birth-weight infants on cognition and behavior at 7 years: a randomized controlled trial. Pediatr Res. 2018;83(1–1):111–118
  32. Allen RP et al. Evidence-based and consensus clinical practice guidelines for the iron treatment of restless legs syndrome/Willis-Ekbom disease in adults and children: an IRLSSG task force report. Sleep Med. 2018, 41, 27–44
  33. Ferric carboxymaltose in patients with restless legs syndrome and nonanemic iron deficiency: a randomized trial. Mov Disord. 2017;32(10):1478–1482
  34. Kantor J et al. Decreased serum ferritin is associated with alopecia in women. J Invest Dermatol 2003;121:985
  35. Deloche C et al. Low iron stores: a risk factor for excessive hair loss in non-menopausal women. Eur J Dermatol 2007;17:507–512
  36. Martines-Torres C et al. Effect of exposure to low temperature on normal and iron-deficient subjects. On J Physiol 1984, 246: R380–R383
  37. Scott L J. Ferric carboxymaltose: a review in iron deficiency. Drugs 2018;78(4):479–493
  38. Information for Healthcare professionals Ferinject®: www.swissmedicinfo.ch
  39. Geisser P. Safety and efficacy of iron(III)-hydroxyde polymaltose complex / a review of over 25 years experience. Arzneimittelforschung 2007;57(6A):439–52
  40. Geisser P. The pharmacology and safety profile of ferric carboxymaltose (Ferinject®): structure/reactivity relationships of iron preparations. Port J Nephrol Hypert 2009:23(1):11–16
Absorption du fer | Ferinject CH​
En général, seule une petite partie du fer est absorbée par l'alimentation, dont la quantité varie considérablement d'un individu à l'autre et chez un même individu.​